
Objektovo-orientované programovanie 2023/24 A
prof. Ing. Valentino Vrani�c, PhD., ÚISI FIIT STU
Exam { June 11, 2024

Priezvisko:

Meno:

1 b

2 b

3 b

1

2

3

4

5

6

7

8

9

10

11

12

The exam can take up to 70 mi-
nutes.
Write the answers to questions
1{12 into the table. With these
questions, only the answers in
the table will be considered (wit-
hout the work out). An answer
must be unambiguous and rea-
dable, otherwise it will be mar-
ked with 0 points.

In multiple choice questions only
one choice is correct { write into
the table only the letter by which
the answer you choose is marked
with.

Write the answer to question 13
exclusively on the paper with the
question text.

No damaged paper will be accep-
ted.

1. (1 b) Multiple inheritance in C++

(a) serves to reduce the number of classes
(b) replaces the friend mechanism
(c) may contribute to a better separation of concerns
(d) is the same as repeated inheritance
(e) represents an alternative to virtual functions

2. (1 b) The open{closed principle says that

(a) every data stream needs to be closed after opening
(b) code should be open for change, but closed for extension
(c) code should be both open and closed for editing
(d) every data stream except standard input and output must

also be closed after opening
(e) code should be open for extension, but closed for changes

3. (1 b) In C++, using the special keyword, overriding

(a) can be disabled if not needed
(b) must be activated if necessary
(c) must be activated if necessary, and can then be deactiva-

ted
(d) must be disabled if not needed
(e) must be activated if necessary, and subsequently deacti-

vated

4. (1 b) The fact that an object of another class can be used
instead of an object of a given class means that between these
classes there is a relationship of

(a) aggregation
(b) integration
(c) segregation
(d) inheritance
(e) genericity

5. (1 b) In the C# language, a delegate represents

(a) a function of corresponding parameter types and return
value

(b) a pointer to an object
(c) a property of the corresponding type
(d) any function
(e) any property

6. (1 b) The expression call(abc∗(. .)) in AspectJ means

(a) calling the call() method before all methods whose name
starts with abc

(b) catch the call of all methods whose name starts with abc
(c) calling the �rst method whose name starts with abc
(d) calling all methods whose name starts with abc
(e) catching the �rst call to a method whose name starts with

abc

7. (2 b) The following program in Java is given:

class C implements Runnable {
M m;

public C(M m) {
this.m = m;

}
public void run() {

for (int i = 0; i < 100000; i++) {
m.p1();
m.p2();
m.p3();

}
}

}

public class M {
private int a = 1, b = 1;

public void p1() {
if (a != b)

System.out.print("1");
a = 1;
b = 1;

}

public void p2() {
if (a != b)

System.out.print("2");
a = 2;
b = 2;

}

public void p3() {
synchronized(this) {

if (a != b)
System.out.print("3");

a = 3;
b = 3;

}
}

public static void main(String[] args) {
M m = new M();
new Thread(new C(m)).start();
new Thread(new C(m)).start();

}
}

At which methods the modi�er synchronized must be added
to guarantee that nothing is ever printed (specify them in this
notation: Class.method())?

1



8. (2 b) For which design pattern the noti�cation of certain
objects when the state of another object changes is indicative?

(a) Strategy
(b) Composite
(c) Observer
(d) MVC
(e) Visitor

9. (2 b) What is all printed out by the commands
System.out.print() after running the following Java program
(up to its successful or unsuccessful completion)?

public class E {
public void c(int n) throws Exception {

if (n == 0)
throw new Exception();

}

public void m(int n) {
try {

c(n);
} catch (Exception e) {

System.out.print("E");
} �nally {

System.out.print(n);
}

}

public static void main(String[] args) {
E e = new E();
e.m(2);
e.m(0);
e.m(2);

}
}

10. (2 b) The graphical user interface of a computer game
is created using the JavaFX framework. It also includes the t
button, in connection with which the following code occurs in
the game:

t.setOnAction(e −> {
if (player.hasShield())

player.setEnergy(player.getEnergy() − 1);
else

player.setEnergy(player.getEnergy() − 2);
});

The primary problem with this code from an object-oriented
design perspective is that

(a) application logic occurs in the user interface
(b) the event handler was not implemented by an anonymous

class
(c) polymorphism was not used
(d) encapsulation was not used
(e) it does not contain a comment

11. (3 b) What is all printed out by the commands
System.out.print() after running the following Java program?

class C {
public void f() {

System.out.print("C");
}

}
class D extends C {

public void f() {
super.f();
System.out.print("D");

}
}
class E extends D {

public void f() {
super.f();
System.out.print("E");

}
}
class F extends E {

public void f() {
super.f();
System.out.print("F");

}
}
public class M {

public static void main(String[] args) {
F o1 = new F();
C o2 = new E();
E o3 = new E();
D o4 = new F();

((E) o1).f();
System.out.print(" ");

((D) o2).f();
System.out.print(" ");

((C) o3).f();
System.out.print(" ");

((C) o4).f();
System.out.print(" ");

}
}

12. (3 b) The method guarantees that it will return a whole
positive number after the calculation. The method that over-
rides it returns a whole number that can also be negative.
By this, preconditions and postconditions of these methods

are weakened, strengthened, or remain the same? Is Liskov
substitution principle (LSP) preserved by this? Is it correct to
use inheritance in this case?
Answer in this form: preconditions / postconditions / LSP

/ inheritance. Replace the items postconditions and precon-
ditions with the one of the following possibilities: weakened,
strengthened, or remain the same. Replace the item LSP with
the one of the following possibilities: preserved or not preser-
ved. Replace the item inheritance with the one of the following
possibilities: yes or no.

2



OOP { Exam { June 11, 2024
Priezvisko:

Meno:

13. (10 b) A virtual space consists of connected cells. The
cell can be indivisible or divisible. A divisible cell may contain
other indivisible and divisible cells. Cells can be connected
regardless of whether they are indivisible or divisible. For each
cell, it is possible to get a list of cells that can be accessed from
this cell, which are the cells to which the given cell is connected
directly and { in case of a divisible cell { the cells, which the
given cell consists of (the �rst level).
Provide the basic design as a UML class diagram sketch

containing the most important relationships, operations, and
attributes. In this, apply the most appropriate design pattern
among Strategy, Observer, Visitor, and Composite. Explicitly
identify the elements that model and implement the roles of
the design pattern applied. The visibility of the elements does
not have to be introduced.
Provide the corresponding implementation in Java (the code

itself). In implementation, focus on the application logic { the
user interface is not the subject of the question. Take into
account the principles of object-oriented programming. Pro-
vide an example of use in which you create the corresponding
objects and start o� their interaction.
The question will be marked according to the following key:

• providing the basic functionality { 4 b

• quality and exibility of the object-oriented design { 6 b

3



Objektovo-orientované programovanie 2023/24 A
prof. Ing. Valentino Vrani�c, PhD., ÚISI FIIT STU
Exam { June 11, 2024
30

1 c

2 e

3 b

4 d

5 a

6 b

7 M.p1() a M.p2()

8 c

9 2E02

10 a

11 CDEF CDE CDE CDEF (akceptovaná je aj odpoveï bez
medzier)

12 remain the same / weakened / not preserved / no

13 The Composite pattern should have been applied. A cell as
such would be in the role of Component (interface or ab-
stract class), a divisible cell in the role of Composite, and
an indivisible cell in the role of Leaf (classes derived from
the class representing the cell). The operation of listing
or returning connections should have been implemented
in such a way that it could be applied transparently over
both divisible and indivisible cells (it should have been
present in the cell, and overridden in divisible and indivi-
sible cells).

Both divisable and indivisable cells should contain evi-
dence (e.g., a list or array) of the cells they are associated
with. In addition, a divisable cell should contain a record
of the cells it consists of. The list or return connection
operation for an indivisible cell should return only the
cells the given cell is connected to, while for a divisible
cell, the cells of which it consists should also be added.

4


