Replacing Object-Oriented Design Patterns with Intrinsic Aspect-Oriented Design
Patterns

Pavol Baca and Valentino Vranié¢
Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technologies
Slovak University of Technology
Bratislava, Slovakia
Email: pavol.bacal @ gmail.com, vranic @fiit.stuba.sk

Abstract—This paper shows how intrinsic aspect-oriented de-
sign patterns can be used to implement object-oriented design
patterns in order to achieve better composability compared
to both original implementations of object-oriented design
patterns and their aspect-oriented reimplementations. Director,
an aspect-oriented pattern known for its ability to replace a
number of object-oriented patterns, owes its success to its
obliviousness to the problems addressed by the patterns it
can be used instead of. The paper proposes how two other
intrinsic aspect-oriented patterns can be used as an alternative
to object-oriented patterns: Worker Object Creation can be
successfully used instead of Proxy, while Cuckoo’s Egg can
replace Singleton, Abstract Factory, and Flyweight. To check
that these replacements are valid beyond their isolated applica-
tion, a small study has been conducted in which a composition
of Worker Object Creation and Cuckoo’s Egg in place of
the composition of the original object-oriented patterns Proxy,
Singleton, Abstract Factory, and Flyweight has been used. To
assess the implementation of intrinsic aspect-oriented patterns
compared to object-oriented patterns they replace and their
aspect-oriented reimplementations, software metrics relevant
both to object-oriented and aspect-oriented code mainly with
respect to separation of concerns have been applied.

Keywords-design patterns; intrinsic aspect-oriented design
patterns; design pattern composition

I. INTRODUCTION

Since most aspect-oriented programming languages repre-
sent extensions of object-oriented programming languages,
object-oriented design patterns can be applied in them di-
rectly. As patterns from the catalog by Gamma et al. [1]—
known as GoF (Gang of Four) patterns—hold a prominent
position being a part of everyday vocabulary of software de-
velopers, it comes as no surprise they were the first place to
look for patterns valid also for aspect-oriented programming.
GoF patterns were reimplemented in Aspect), the most
popular aspect-oriented programming language (based on
Java), to separate crosscutting concerns in their application
soon after the advent of aspect-oriented programming [2].

Part of these crosscutting concerns arises from pattern
composition. As software elements, patterns have to be
composed with each other in order to establish a working
piece of software. For object-oriented design patterns, this

typically means a pattern implementation shares one or more
classes with another pattern implementation (to which each
pattern adds its own methods) or invokes one or more of
its methods. Given that each pattern constitutes a separate
concern, such a composition introduces their crosscutting.
Apparently, less crosscutting improves composability by
making it easier to actually compose patterns, as well as
to take a pattern out of a composition.

Since aspect-oriented programming provides mechanisms
to modularize crosscutting concerns, aspect-oriented reim-
plementations of GoF patterns were initially believed to be
a priori better composable than the original, object-oriented
implementations of the same patterns [2], [3]. However, a
qualitative and quantitative assessment [4] showed this is not
so in all cases.

On the other hand, there are patterns intrinsic to aspect-
oriented programming. These patterns rely on specific
aspect-oriented programming constructs and therefore can’t
be applied in object-oriented programming. The composition
of intrinsic aspect-oriented design patterns is often as simple
as merely including them in the implementation, i.e. without
having to modify other patterns that participate in it [5], [6].

Aspect-oriented reimplementations of object-oriented pat-
terns have been developed with no intention to keep them
being patterns in the context of aspect-oriented programming
(they become a simple application of aspect-oriented con-
structs). However, some of such aspect-oriented reimplemen-
tations of object-oriented patterns actually represent intrinsic
aspect-oriented patterns. For example, the Singleton pattern
aspect-oriented reimplementation [2] represents a Cuckoo’s
Egg aspect-oriented pattern application.

The objective of this paper is to explore to what extent
intrinsic aspect-oriented patterns can be used to replace
object-oriented patterns in order to benefit from their im-
proved composability. For this, a study has been conducted
in Aspect]. Its results are presented in the rest of the paper.
Section II discusses the Director aspect-oriented pattern
known for its ability to replace a number of object-oriented
patterns. Sections III and IV discover how two other in-
trinsic design patterns, namely Worker Object Creation and



Cuckoo’s Egg, can be used to replace several GoF patterns.
Section V presents a study that confirms the validity of the
replacements in the composition involving two patterns. It
also compares the compositions quantitatively. Section VI
discusses related work. Section VII concludes the paper and
indicates some directions of further work.

II. DIRECTOR

The Director design pattern enables to define roles of
behavior and enforce their implementation to classes. An
aspect defines the interaction between these roles by which
it actually affects the interaction between the classes. With
Director, it is possible to decouple generic and reusable
behavior from the implementation classes of a specific
application [7].

The Director pattern can be identified in several aspect-
oriented reimplementations of GoF patterns [2], [8]. How-
ever, it is exactly such a general applicability of Director that
raises a question whether it really internally covers such a
broad spectrum of problems addressed by object-oriented
patterns. With respect to Alexander’s definition of a pattern
by which it is a rule that connects the context, problem,
and solution [9], it is legitimate to ask what problem does
Director as a pattern actually address. The problem solved
by Director is the separation of the generic reusable behavior
from the specific implementation in classes by defining roles
of behavior. This problem is unlike anything solved by
GoF patterns and their aspect-oriented implementations. In
fact, the key parts of the original GoF pattern “replaced”
by Director remain and Director actually just ensures their
interconnection and enforcement upon the underlying code.

Let’s take as an example the Prototype pattern [1], which
enables a class to create instances of classes unknown to
it by making clones out of the prototype instances of these
classes that have been supplied to it previously. In the aspect-
oriented reimplementation of Prototype based on Director,
Director by itself does not solve the problem of cloning a
prototype—it uses Prototype for this [2]:

public abstract aspect PrototypeProtocol {
protected interface Prototype {

}

public Object Prototype.clone()
throws CloneNotSupportedException {
return super.clone();

}
public Object cloneObject(Prototype object) {

try {
return object.clone();

}
catch (CloneNotSupportedException ex) {
return createCloneFor(object);

}

protected Object createCloneFor(Prototype object) {
return null;

The PrototypeProtocol aspect provides a general Prototype
Aspect] implementation. It introduces the clone() method
implementation into all the classes that implement the
Prototype interface defined inside of it using so-called inter-
type declarations. This just invokes the assumed existing
cloning mechanism in these classes. The cloning itself is
realized by the cloneObject() method of the aspect that in
turn uses the createCloneFor() method to do real cloning for
classes that do not implement cloning.

The actual implementation of the createCloneFor()
method comes to place in concrete aspects that are aware
of the application domain details. Assume we want to
clone shapes in a graphic tool. A concrete aspect enforces
cloning to the Shape class using another type of inter-type
declarations and implements the cloning itself by overriding
the createCloneFor() method:

public aspect ShapePrototypes extends PrototypeProtocol {
declare parents: Shape implements Prototype;

protected Object createCloneFor(Prototype object) {

-
}

It is sufficient to add these two aspects to the rest of the
application code. Upon the first use of the Shape class, a
ShapePrototypes aspect instance will be created. It may be
accessed by the aspectOf() method. The actual cloning is
then performed like this:

Shape shape = (Shape) ShapePrototypes.aspectOf().
cloneObject(shapePrototype);

It can be said that in the resulting code Director predom-
inates over Prototype, but not that it replaces Prototype as
Prototype remains present at the problem solution level.

III. WORKER OBJECT CREATION

Separating the primary functionality from managing its
execution in threads is the problem solved by the Worker
Object Creation design pattern. A method call containing
the functionality of interest is caught dispatched to another
context that might be even in a different thread.

Technically speaking, the functionality is caught by a
construct called pointcut that enables to express declaratively
certain types of points in the execution called join points.
Another aspect-oriented construct called advice can be ap-
plied to join points and add some other functionality before,
after, or even instead of them. The last kind of advice is
called around advice and this the one used in Worker Object
Creation.

A popular application of Worker Object Creation is to
catch all the calls to graphical user interface controls imple-
mented in Swing as they have to be executed in its event



dispatching thread to ensure their sequential execution [10].
Apart from reducing the number of lines of code, Worker
Object Creation provides an opportunity to manage creating
these threads in one place [10]. However, this pattern is
much more powerful. Executing a method in a new thread
delays its execution, so it can be seen as a special case
of a delayed method execution. This will be shown on an
example of replacing the Proxy pattern with the Worker
Object Creation pattern.

The Proxy pattern is useful when a versatile or sophisti-
cated reference to an object is needed rather than a simple
pointer [1]. There are several situations in which the pattern
is applicable. One of them is a smart reference which
performs loading a persistent object into a memory when
it is referenced for the first time. There is a condition that
reference class (Proxy) must be of the same type as the
referenced class [1].

Worker Object Creation can be used in such situations
instead of the Proxy pattern. This is possible because both
patterns solve similar problems and, as was mentioned
above, the problem solved by Worker Object Creation is
more general.

Consider a smart toolbar in an application graphical user
interface as an example. In order not to waste the time of
a user who doesn’t need the toolbar, the toolbar and tool
buttons are not created right at the application start, but only
on a user demand. Figure 1 shows a class diagram with
Worker Object Creation applied to this problem.

Since UML lacks the appropriate syntax that would cor-
respond directly to Java anonymous classes, a static nesting
in combination with the «anonymous» stereotype has been
used for this purpose [11]. Aspects are modeled as classes
with the «aspect» stereotype. Both advices and inter-type
declarations (see Section II) are modeled as methods.

The pattern is implemented by the ToolbarProxy aspect.
The aspect captures calls to the Toolbarlmpl class constructor
with an around advice and postpones its execution which, in
turn, postpones the toolbar loading. Here is the implemen-
tation:

public aspect ToolbarProxy {
public Toolbarlmpl.new(ToolbarProxy a) {

Toolbarlmpl around(): call(Toolbarimpl.new()) {
return new Toolbarlmpl(this) {
private ToolbarImpl toolbarimpl;

public void setVisible(boolean visible) {
if (toolbarlmpl == null)
toolbarlmpl = proceed();

toolbarlmpl.setVisible(visible);

}

// other methods using the original class instance

I8

}

Inside of the around advice, a proxy reference anonymous
class is created. It inherits from the Toolbarlmpl class (for this
reason the Toolbarlmpl class can’t be final). The anonymous
class implements the setVisible() method which makes the
toolbar visible. The implementation of the method, which
overrides the method in the Toolbarlmpl class, invokes the
captured constructor with the proceed() statement if the
toolbar has not been loaded. Thus, the anonymous class
plays the role of the Proxy class in the original GoF Proxy
pattern.

For the needs of the anonymous class it may be necessary
to define a new constructor of the Toolbarlmpl class that
does nothing beside creating a new toolbar. The constructor
with no parameters can be easily added by an inter-type
declaration, but there may be a clash with the no parameter
constructor if it is already implemented in the class itself.
Even if this is not so, it is hard to predict how this class is
going to develop in future. This may be avoided by adding
a constructor with a parameter type that is hardly going to
be used by anyone and the aspect type itself appears to be
quite convenient for this.

IV. Cuckoo’s EGG

The goal of the Cuckoo’s Egg pattern is to control and
change class instantiation by capturing constructor or factory
method calls. Constructor calls are caught by an around
advice (see Section III) followed by returning a new object
of the same or derived type [7]. We will see how this pattern
can be applied instead of three GoF patterns: Singleton,
Abstract Factory, and Flyweight.

The Singleton pattern is used to ensure a class will have
only one instance and also to provide a global access point
to it [1]. The Singleton aspect-oriented reimplementation is
based on catching a constructor call by an around advice
and looking up the existing instance in a hash map [2].
The existing instance is returned or the proceed() statement
is executed in order to produce it. This is actually an
application of the Cuckoo’s Egg pattern.

The Abstract Factory pattern is used to provide an inter-
face for creating families of objects without specifying the
classes [1]. An aspect-oriented equivalent is based on adding
inter-type declarations to an interface which is implemented
by a factory class. Another solution is to use the Cuckoo’s
Egg pattern, which will be demonstrated on an example.
Consider two families of shape classes: 2D and 3D shapes.
The class diagram that shows the application of Cuckoo’s
Egg to this problem is depicted in Figure 2.

Because an abstract class can’t have a constructor, a static
factory method is used instead. A call() pointcut catches the
calls to this static method. Subsequently, the abstract factory
aspect and concrete aspects play the roles of factory classes
in the Abstract Factory pattern.



«aspect»
ToolbarAspect

Toolbarimpl

«inter-type» +Toolbarlmpl.new(a: ToolbarAspect)~ —> +setVisible(v: Boolean): void
Toolbarlmpl around(): call(Toolbarlmpl.new())

+Toolbarlmpl()

-+

«anonymous»

Figure 1.

«aspect»
AbstractShapesFactoryAspect

+pointcut catchNewCircle()
+pointcut catchNewRectangle()

«i - » +Ci

«inter-| » +R ngle.newln

1

Toolbarimpl1
-toolbarlmpl: Toolbarimpl
+setVisible(v: Boolean): void

Worker Object Creation as a replacement for Proxy.

Circle

=

Circle2D Circle3D

——————— >

«aspect»

Shapes2DFactoryAspect

-pointcut isActive()

Circle around(): catchNewCircle() && isActive()
Rectangle around(): catchNewRectangle() && isActive()

Figure 2.

In our example, a new instance of a circle is created by
a call to the newlnstance() factory method inserted into the
abstract Circle class by an inter-type declaration. It is more
straightforward and natural than calling a factory class to
get a new instance. If there is no concrete factory aspect, an
lllegalStateException is thrown, which is analogous to the
situation when no factory class is defined.

Flyweight is a GoF pattern similar to Singleton. It is
used to avoid a huge memory consumption by a number
of equal objects [1]. The aspect-oriented reimplementation
of Flyweight is based on an aspect that handles a hash table
with existing instances [2], which is similar to the aspect-
oriented reimplementation of Singleton, but it is not based
on an advice [2].

As with Singleton, Cuckoo’s Egg can be used instead of
Flyweight, too. The difference is that proceed() is called
every time a new object is needed. A new instance is then
compared to existing instances in the aspect hash map and
kept only if it is different.

Note that the example from Section IV exhibits some
features of the Cuckoo’s Egg pattern: a constructor call
is caught by an advice and a new object of the same
type is created then and returned. However, the dominant
issue is that the captured functionality—which happens to
be a constructor—is sent to a different context for an
unconditional execution. Thus, the original class instance is
not dropped as with Cuckoo’s Egg.

Cuckoo’s Egg as a replacement for Abstract Factory.

V. EVALUATION: DESIGN PATTERN COMPOSITION

Previous sections introduced examples of replacing
object-oriented design patterns by intrinsic aspect-oriented
design patterns. Worker Object Creation has been used in-
stead of Proxy. Cuckoo’s Egg has been used to replace three
GoF patterns: Singleton, Abstract Factory, and Flyweight.

To check that these replacements are valid beyond their
isolated application, we conducted a small study based
on the implementation of a toy graphic tool that enables
drawing simple geometric shapes and writing text.! The tool
supports 2D and 3D mode, which is statically configured
before the tool is started. The shapes are drawn by clicking
the buttons in the toolbar. In order not to waste the time of
users who don’t need the toolbar, the toolbar and tool buttons
are not created right at the application start, but only on a
user demand. The graphic tool also offers an image gallery.
As with the toolbar, the gallery is created on demand, too.

The tool supports text writing, including arabesque letters.
The tool reduces memory costs by reusing an arabesque
letter image that has already been created. Only one instance
of a gallery is needed, as well as one instance of an
arabesque letter storage. Analogously to the 2D and 3D
mode configuration, it is possible to configure an arabesque
letter font. Another way is to configure the font by the tool
interface if it has been created. A font is loaded to the

IThe complete code is available at http://fiit.stuba.sk/~vranic/proj/dp/
Baca/aoOoPatterns.zip.



memory when it becomes necessary.

This simple example offers an opportunity to implement
six pairs of pattern compositions. Three implementations
have been created: an object-oriented one, with object-
oriented design pattern composition, and two aspect-oriented
implementations one of which includes aspect-oriented reim-
plementations of the original object-oriented patterns, while
the other one employs the corresponding intrinsic aspect-
oriented patterns instead.

A. Object-Oriented Implementation

In the object-oriented implementation, Abstract Factory
with Singleton have been applied to enable configuring the
application to be used in 2D or 3D mode and to ensure only
one its instance is created. Proxy with Abstract Factory have
been applied to let the toolbar, for shape painting, be loaded
on user demand by using a proxy reference. Proxy with
Singleton have been applied to let the single gallery instance
be loaded on user demand by using a proxy reference. Sin-
gleton with Flyweight have been applied to create a single
storage instance for arabesque letters. Abstract Factory with
Flyweight have been applied to enable static configuration of
an arabesque letter font. Finally, Proxy with Flyweight have
been applied to enable user configuration of an arabesque
letter font.

The aspect-oriented reimplementation of object-oriented
patterns was developed to demonstrate an aspect-oriented
solution is indeed possible. The Hannemann—Kiczales [2]
aspect-oriented reimplementations of the Proxy, Singleton,
Abstract Factory, and Flyweight patterns have been applied.

B. Implementation with Intrinsic Aspect-Oriented Patterns

Finally, the corresponding intrinsic aspect-oriented pat-
terns have been applied instead of the corresponding object-
oriented patterns. Their application has actually already been
introduced in Sections III-IV. A few deviations from the
original object-oriented implementation showed up in the
implementation. The first one lies in not having an explicit
Singleton implementation since the only instance of Ab-
stract Factory—i.e., the Cuckoo’s Egg aspect—is ensured by
an implicit issingleton() aspect instantiation modifier. The
second deviation lies in the conflict between the pointcuts
implemented in Cuckoo’s Egg and Worker Object Creation.
An additional declare precedence statement had to be
added into both aspects.

Many aspect-oriented reimplementations of object-
oriented patterns are based on the Director pattern, which
makes a significant part of them reusable (see Section II).
Such reusability is not common among intrinsic aspect-
oriented patterns, but it seems that they affect the parts
of other patterns in composition to a lesser degree than
the aspect-oriented reimplementations of the corresponding
object-oriented patterns. For example, the Proxy pattern
aspect-oriented reimplementation needs a ToolbarProxy class

to be added and its instance to be used to access the toolbar
object. Thus, adding this pattern affects at least one other
class and also a creation of a new class.

On the other hand, no part of any other pattern is affected
by the application of the Worker Object Creation pattern,
Proxy’s aspect-oriented counterpart, nor there is a need to
create some other class. Thus, with respect to composability,
an intrinsic aspect-oriented pattern is a good alternative.
The composition is performed simply by including the
corresponding pattern in the application build. A pattern
is removed by excluding it from the build. Other intrinsic
patterns studied here are also composable by a simple
inclusion.

C. Quantitative Assessment

To assess the implementation of intrinsic aspect-oriented
patterns compared to object-oriented patterns they replace
and their aspect-oriented reimplementations, software met-
rics relevant both to object-oriented and aspect-oriented
code [3], [4] used in several studies about aspect-oriented
pattern implementations [3] have been applied:

« separation of concerns: Concern Diffusion over Com-
ponents (CDC), Concern Diffusion over Operations
(CDO), and Concern Diffusion over Lines of Code
(CDLOC)

o coupling: Coupling Between Components (CBC) and
Depth Inheritance Tree (DIT)

o cohesion: Lack of Cohesion in Operations (LCOO)

e size: Lines of Code (LOC), Number of Attributes
(NOA), and Weighted Operations per Components
(WOC)

Separation of concerns is measured inverted (interconnec-
tion of concerns) as diffusion of concerns over classes and
aspects (CDC), methods and advices (CDO), and lines of
code (CDLOC) [3]. More separated concerns tend to be less
diffuse.

Coupling is observed by a number of classes and aspects
to which a class or an aspect is coupled (CBC) and by its
depth in the inheritance tree (DIT) [3].

Cohesion is followed inverted (lack of cohesion) as a
number of method and/or advice pairs that do not access
the same attribute (LCOOQO).

Size is measured in terms of simple lines of code (LOC),
a number of attributes of each class or aspect (NOA), and a
number of methods and advices of each class or aspect and
the number of its parameters (WOC) [3].

Since improved composability reflects significantly in
separation of (crosscutting) concerns (as was discussed in
the introduction of the paper), the most relevant metrics for
this study are those about separation of concerns. However,
coupling and cohesion are also important because they
express how modular the implementation is.

Coupling, cohesion, and size metrics have been evaluated
automatically using Borland Together 2008 [12] with AJDT



plugin for Eclipse [13]. The separation of concerns metrics
have been calculated manually line by line.

In aspect-oriented reimplementations of object-oriented
patterns, reusable abstract aspects, denoted sometimes as
protocols [2], have not been included into the evaluation.
The reason for this is that these aspects act as library classes,
so they are not included in results along with, for example,
the java.util package classes.

As a result of measurements, there have been some
additional findings about the Proxy pattern replacement.
According to three metrics from the suite, the Proxy pattern
substitution by Worker Object Creation seems to be better
compared to Proxy’s aspect-oriented reimplementation. Im-
provements of WOC (41%), CBC (28%), and CDO (48%)
are a consequence of reducing the number of classes and
number of operation parameters.

Figure 3 shows comparison from the separation of con-
cerns perspective. The numbers above the graph indicate
percentage by which the substitution by intrinsic patterns
is better than the aspect-oriented reimplementation. Us-
ing fewer classes in implementation with intrinsic aspect-
oriented patterns improved two of three metrics—CDC
(21%) and CDO (37%). CDLOC got worse, but only slightly
(-3%).

:g L_Xele)

70 B AO Reimpl -3%

. Oaontr

50

40 37%

30 21%

20

10

0
CDC CDO CDLOC
Figure 3. Separation of concerns.

Figure 4 shows comparison from the perspective of cou-
pling and cohesion. Coupling has improved with intrinsic
aspect-oriented patterns as can be seen from both coupling
metrics that have been used: CBC (21%) and DIT (9%).
LCOO metrics for cohesion improved too (24%).

90

80 21% 9% =9
- H AO Reimpl
O
60 AOQ Intr
50
40
0,

- 24%
20
10

0

CBC DIT LCOO

Figure 4. Coupling and cohesion.

Figure 5 shows comparison from the perspective of size.
Except for the improvement of WOC (27%) no other im-
provement has been achieved. NOA (-10%) is worse for
intrinsic aspect-oriented patterns than for reimplementations.
With respect to this result, it was detected that NOA metrics
as evaluated by Borland Together 2008 tool counts both
pointcuts and advices as attributes. Thus, using more as-
pects inside intrinsic aspect-oriented pattern compositions
increases the NOA value.

900

800 2% e
B AO Reimpl
700 OAO Intr
600
500
400
300
200 27%
0 [
Loc NOA wocC
Figure 5. Code size.

The assessment demonstrated that substitutions by intrin-
sic aspect-oriented patterns don’t become less convenient
than aspect-oriented reimplementation of object-oriented
patterns. Moreover, they exhibited better results with respect
to separation of concerns and coupling in composition.

VI. RELATED WORK

Much of the effort related to object-oriented design pat-
terns in aspect-oriented programming has been focused on
a direct aspect-oriented reimplementation of GoF patterns
in Aspect]. Some reimplementations have been reported
in other aspect-oriented languages, e.g. Ceasar] [14] or
ComposeJ [15], but the most systematic work was an
aspect-oriented reimplementation of all 23 GoF patterns in
Aspect] by Hannemann and Kiczales which demonstrated
improvement in code locality, reusability, composability, and
pluggability of 17 of them [2].

An independent qualitative assessment of GoF pattern
reimplementations discovered an improvement of the sepa-
ration of concerns related to pattern realization mechanism,
but without a significant advance in reuse [3].

Further evaluation of (mostly pair) compositions of
aspect-oriented GoF pattern reimplementations for separa-
tion of concerns, coupling, cohesion, and conciseness re-
vealed that the quality of aspect-oriented reimplementations
depends on the patterns involved, the composition intrica-
cies, and the application requirements [4]. The results were
not always in favor of aspect-oriented reimplementations.

The idea of using intrinsic aspect-oriented patterns to
replace object-oriented patterns comes from the reported
ability of the Director pattern to act in place of some
GoF patterns [7], [8] that has been shown here to be



overestimated. However, a hope was given to other intrinsic
aspect-oriented patterns.

The use of the Cuckoo’s Egg pattern proposed in this
paper is similar to the Advised Factory Method (Advised
Creation Method)? idiom [16].

VII. CONCLUSIONS AND FURTHER WORK

Intrinsic aspect-oriented design patterns can be used to im-
plement object-oriented design patterns. They are expected
to achieve a better composability compared to both original
implementations of object-oriented design patterns and their
aspect-oriented reimplementations. Even though, they seem
to be an alternative, not a preference.

The Director pattern is known for its ability to replace a
number of object-oriented patterns. This paper pointed out
that part of Director’s success lies in its obliviousness to the
problems addressed by the patterns it can be used instead
of. Since Director does not replace the original pattern at
the problem solution level, it should not be counted as its
substitution.

On the other hand, two other intrinsic aspect-oriented
patterns have been discovered that can be used as substi-
tutions of object-oriented patterns. Worker Object Creation
can be successfully used instead of Proxy. Cuckoo’s Egg
can replace Singleton, Abstract Factory, and Flyweight. The
validity of these substitutions has been confirmed by the
composition of Worker Object Creation and Cuckoo’s Egg
in place of the composition of the original object-oriented
patterns Proxy, Singleton, and Abstract Factory.

In a quantitative assessment, better results have been
observed with intrinsic aspect-oriented patterns than with
aspect-oriented reimplementations. However, it must be ad-
mitted that the results were obtained for a quite limited
number of patterns: out of 23 GoF patterns only four of
them have been successfully substituted by intrinsic aspect-
oriented patterns.

Possible directions of further work include exploring the
potential of other intrinsic aspect-oriented patterns to replace
object-oriented patterns. Other aspect-oriented programming
languages should be engaged, too, especially those that sup-
port symmetric aspect-oriented programming (e.g., HyperJ
or CaesarJ). Yet another possible direction is to investigate
how replacement of object-oriented patterns fits into the con-
text of refactoring, both at the implementation and modeling
level [17].

ACKNOWLEDGMENTS

The work was supported by the Scientific Grant Agency
of Slovak Republic (VEGA) grant No. VG 1/0508/09.

This contribution/publication is also a partial result of
the Research & Development Operational Programme for
the project Research of Methods for Acquisition, Analysis

Zoriginally denoted as “adviced”

and Personalized Conveying of Information and Knowledge,
ITMS 26240220039, co-funded by the ERDF.

REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[2] J. Hannemann and G. Kiczales, “Design pattern implementa-
tion in Java and Aspect],” in Proc. of 17th ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA 2002. Seattle, Washing-
ton, USA: ACM, 2002, pp. 161-173.

[3] A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza, C. Lu-
cena, and A. von Staa, “Modularizing design patterns with
aspects: A quantitative study,” in Proc. of 4th International
Conference on Aspect-Oriented Software Development, AOSD
2005. Chicago, Illinois, USA: ACM, 2005, pp. 3—-14.

[4] N. Cacho, C. Sant’Anna, E. Figueiredo, A. Garcia, T. Batista,
and C. Lucena, “Composing design patterns: A scalability
study of aspect-oriented programming,” in Proc. of 5th Inter-
national Conference on Aspect-Oriented Software Develop-
ment, AOSD 2006. Bonn, Germany: ACM, 2006, pp. 109—
121.

[5S] R. Menkyna, V. Vrani¢, and I. PoldSek, “Composition and
categorization of aspect-oriented design patterns,” in In Proc.
of 8th International Symposium on Applied Machine Intel-
ligence and Informatics, SAMI 2010. Herl'any, Slovakia:
IEEE, Jan. 2010.

[6] R. Menkyna, “Towards combining aspect-oriented design
patterns,” in Proc. Informatics and Information Technologies
Student Research Conference, IIT.SRC 2007, M. Bielikova,
Ed., Bratislava, Slovakia, Apr. 2007, pp. 1-8.

[7] R. Miles, AspectJ Cookbook. O’Reilly, 2004.

[8] R. Menkyna, “The Director as a connection between object-
oriented and aspect-oriented design,” in Proc. of Informatics
and Information Technologies Student Research Conference,
HIT.SRC 2009, M. Bielikovd, Ed., Bratislava, Slovakia, Apr.
2008.

[9] C. Alexander, The Timeless Way of Building.
University Press, 1979.

Oxford

[10] R. Laddad, Aspect] in Action: Practical Aspect-Oriented
Programming. Manning, 2003.

[11] R. C. Martin, UML for Java Programmers.
2003.

Prentice Hall,

[12] Borland Software Corporation, “Borland Together 2008,”
2010, http://www.borland.com/us/products/together/.

[13] The Eclipse Foundation, “AJDT: Aspect] Development
Tools,” 2010, http://www.eclipse.org/ajdt/.

[14] E. Sousa and M. P. Monteiro, “Implementing design patterns
in Caesar]: An exploratory study,” in Proc. of the Workshop
on Software engineering Properties of Languages and Aspect
Technologies, SPLAT 2008 (at AOSD 2008). Brussels,
Belgium: ACM, 2008, pp. 1-6.



[15]

[16]

[17]

J. C. Wichman, “ComposeJ: The development of a
preprocessor to facilitate composition filters in the java
language,” Master’s thesis, University of Twente, 1999,
http://trese.cs.utwente.nl/oldhtml/publications/msc_theses/
wichman.thesis.pdf.

S. Hanenberg, A. Schmidmeier, and R. Unland, “Aspect]
idioms for aspect-oriented software construction,” in Proc. of
8th European Conference on Pattern Languages of Programs,
EuroPLoP 2003, Irsee, Germany, Jun. 2003, pp. 617-644.

M. Stolc and L. Polasek, “A visual based framework for the
model refactoring techniques,” in Proc. of 8th International
Symposium on Applied Machine Intelligence and Informatics,
SAMI 2010. Herl'any, Slovakia: IEEE, Jan. 2010.



