
Affecting Applications in Android Using Aspects
Ivan Martoš and Valentino Vranić

Institute of Informatics and Software Engineering

Faculty of Informatics and Information Technologies

Slovak University of Technology in Bratislava, Slovakia

martos.ivan@gmail.com, vranic@stuba.sk

Abstract—Aspect-oriented programming enables to affect existing code without having to make changes to it. By this, changes remain

modularized and as such are easily activated or deactivated with a high potential of direct reusability in other applications. However,

aspect-oriented programming on mobile platforms is practically unexploited, despite the whole range of opportunities such as usage

monitoring, power monitoring, altering sensor values, or altering applications. In this paper, we explore possibilities of using aspect-

oriented programming in the AspectJ programming language and demonstrate how to alter the GPS sensor output, phone signals, and

deal with the Context class as a gate to the Android services.

Keywords— aspect-oriented programming; Android; mobile device; change; GPS; notifications; Android services; AspectJ

I. INTRODUCTION

Although it may be very useful to separate crosscutting

concerns right from the start of the application development,

aspect-oriented programming can be used also in a more op-

portunistic fashion: to affect existing code without having to

make changes to it [1, 2]. By this, changes remain modular-

ized and as such are easily activated or deactivated with a high

potential of direct reusability in other applications. Refactor-

ing is another opportunistic use of aspect-oriented program-

ming [3]. However, aspect-oriented programming can serve as

a basis for software development in a use case driven manner

[4, 5], to influence running systems without interruption in

association with complex event processing [6, 7], or even to

define new programming languages [8].

Despite aspect-oriented programming can be used on mod-

ern mobile platforms with only moderate restrictions, its em-

ployment there is very limited.

In this paper, we explore possibilities of using aspect-

oriented programming in the AspectJ programming language

in Android. After explaining how to employ AspectJ in An-

droid (Section II), we demonstrate how to alter the GPS sen-

sor output (Section III), phone signals (Section IV), and deal

with the Context class as a gate to the Android services (Sec-

tion V). Afterwards, we discuss general possibilities of using

aspects in mobile devices, which is followed by a brief com-

parison to related work (Section VI) and conclusions (Sec-

tion VII).

II. EMPLOYING ASPECTJ IN ANDROID

Android as such does not include any kind of aspect-

oriented programming and currently there are no tools dedi-

cated specifically to aspect-oriented development under the

Android platform. To run applications, Android (up to version

4.4.4) uses a special type of Java virtual machine (VM) called

Dalvik, which is designed for the systems with limited

memory and processor speed, such as tablets or smartphones.

This is in part why employing AspectJ in Android is a bit

challenging.

We managed to make a working aspect-oriented program-

ming constellation under Android 4.4.4. To create aspect-

oriented code, we used AspectJ 1.7.3 in Eclipse for Java EE

(Kepler version) in Windows 7.

Crucial to aspect-oriented programming is the process of

so-called weaving: the aspect code is woven—i.e., put—into

the code being affected. With the AspectJ compiler (ajc), this

is fully transparent to developer. However, ajc creates Java

VM bytecode, and not Dalvik bytecode. What is needed is to

make use of weaving provided by ajc while producing Dalvik

bytecode at the same time. The key is in manipulating the ajc

compilation process by adapting the .project file to transform

the Java VM bytecode using the dx tool, which transforms

Java VM bytecode into bytecode executable on Dalvik, before

the weaving takes place. This is the principle behind the pro-

cedure we followed [9], but it had to be adapted a bit to make

it working with Android 4.4.4 by excluding the following el-

ement from the .project file:

<buildCommand>
<name>org.eclipse.jdt.core.javabuilder
</name>
<arguments></arguments>

</buildCommand>

With this way of employment of AspectJ in Android it is

not only possible to capture execution of methods in a given

application, but also to capture application calls to Android

API. Aspects affecting only calls to Android API are poten-

tially reusable in other applications.

Inside of advices it is also possible to provide additional

application logic depending on current state, preferences, or

behavior. However, aspects can’t modify permissions that

application has declared in its manifest file since it is not pos-

sible to add any functionality that does not fulfill requirements

declared there.

III. ALTERING THE GPS SENSOR OUTPUT

Many Android applications use location services API. This

API uses data from the GPS sensor and data from the GSM

network to obtain the location of the device. The biggest prob-

lem of this API is increased energy consumption when obtain-

ing location by GPS. This is something we can affect with

aspect-oriented programming.

Often, applications at startup require GPS sensor to be

turned on (the maps application, for example). Otherwise,

they refuse to provide any functionality or provide limited

functionality only. However, the fulfilling of user’s objectives

may not involve necessity of providing the current location, so

the GPS may be turned off. This problem can’t be solved by

any of publicly available applications, nor API. Using aspects,

we can pick out API calls that check whether GPS sensor is

turned on and return an adjusted response:

boolean around(String provider) : call(boolean
android.location.LocationManager.isProviderEnabled(..)) &&
args(provider) {

//Aditional logic...
return true;

}

This code is a part of an aspect. It includes an advice that

acts upon a pointcut. The pointcut picks out API calls that

check whether GPS sensor is turned on, while the advice code

runs instead (“around”) these calls always returning true.

This is applicable to other sensors, too. It is possible to in-

tercept calls that check whether the sensor is enabled, while

also capturing requested its name (provider). In the given ad-

vice it is also possible to provide additional application logic,

such as returning true only in a selected timespan.

As it was mentioned above, the biggest disadvantage of the

location API is an increased energy consumption. Nowadays

the biggest problem in smartphones is their battery life. The

most popular way of avoiding energy consumption related to

location obtaining, as well as undesired location uncovering,

is to use so-called mock locations. They are based on provid-

ing fake locations by specialized applications. The user has to

download this application and also enable mock locations

inside system settings. However, aspects can provide a spe-

cialized solution for hiding the current location (or providing

the fake one) and saving battery life while providing real loca-

tion updates at the same time. Moreover, the user doesn’t have

to use any additional application, nor modify system settings.

The energy consumption problem can be solved by modify-

ing the request for location updates—swapping the GPS as a

location provider (which requires lots of energy) for the GSM

network provider (has much lower energy consumption, but

provides less accurate location). Although the location provid-

ed will be less accurate, it will still be the real location of the

device and application itself won’t be notified about this

change. Here’s the code:

void around(String provider, long timeChange,
float distChange,
LocationListener listener) :
call(void android.location.LocationManager.

requestLocationUpdates(String, long, float,
android.location.LocationListener))

&& args(provider, timeChange, distChange, listener) {

provider = LocationManager.NETWORK_PROVIDER;
proceed(provider, timeChange, distChange, listener);

}

As can be seen above, not only the provider of the location

can be changed, but also other parameters of the location up-

date request (see the LocationManager documentation [10] for

a detailed parameter description). Modifying these parameters

can lead to less energy consumption or more accurate location.

Smartphones users are often concerned over security,

which leads to attempts to hide their location. Using aspects,

hiding the location can be achieved in two different ways. One

way is based on altering response of the get methods (for ex-

ample getLatitude() and getLongitude()) of the Location class,

which is responsible for location representation. By this, every

method in the application that requests the location—even the

stored one—will be altered. This is useful when the goal is to

modify every possible location (for example, in a specified

time). The advantage is that the real value of attributes of the

Location class won’t be changed, since aspects alter only the

result of its get methods. Thus, if advices affecting the get

methods are disabled, the real location values will be provided.

Another way of location hiding is based on altering the lo-

cations that result from location update requests. Fake loca-

tions with fake data can be provided. The advantage is that

only new location request will be affected. Previously ob-

tained locations will provide real data (they won’t be changed).

However, if the newly “obtained” location would be stored,

later attempts to retrieve the stored location would conse-

quently return the fake one.

IV. ALTERING PHONE SIGNALS

One of the most common ways of signaling events is by us-

ing notifications. The notification API requires no special

permissions declared in the application manifest, so by using

aspects it is possible to add notifications to application at any

place. For example, assume an application signals events to

the user using vibrations. Assume we need to keep the device

absolutely quite, so we want to change vibration by a visual

notification. This can be achieved by catching system calls for

vibration and modify them using the around advice:

void around(): call(void android.os.Vibrator.vibrate(..)) {
createNotification();

}

The vibration (or any other form of signaling) can also be

replaced by playing a notification sound. Playing a sound re-

quires no special permission either.

Aspects provide a very comfortable way of altering phone

signaling. Each advice that captures a given signaling call can

contain specific application logic or rules to provide desired

behavior.

V. CAPTURING CONTEXT

Most of the functionality provided by Android is accessible

through the Context class. With an aspect, the instance of this

class can be captured manipulated consequently changing the

application behavior in various ways. For example, we could

access the application screen. Since the Activity class, which

represents the application screen, extends the Context class, it

is only necessary to capture the creation of this class:

pointcut onCreatePointCut(Object activity) :
execution(* Activity+.onCreate(..)) && target(activity);

before(Object activity) :
onCreatePointCut(activity) {

//capture the activity object
}

VI. GENERAL POSSIBILITIES OF USING ASPECTS IN MOBILE

DEVICES

Usage of aspects in mobile devices can be categorized into

four categories: usage and performance monitoring, affecting

sensors, and added functionality.

A. Monitoring

People have their phone with them all the time. Times

when phones were used only for calling are past. We use

phones for calling, as alarm clock, internet, navigation, and

many others. Using well defined pointcuts and advices, we

can monitor customs and routines of users and analyze them.

As we already mentioned in Section III, one of the biggest

problem of today in mobile devices is their battery life. Using

aspects it is possible to monitor use of any sensor, use of ser-

vices, or even the time when the display was turned on. By

analyzing these data it is possible to identify which applica-

tion or sensor consumes the biggest amount of energy and

affect its activity to enhance the battery life. It is important to

base the monitoring pointcuts on system calls, and not on ap-

plication calls. Albeit the pointcuts can be defined so to cap-

ture custom application calls, the user can use other applica-

tion for accessing desired functionality and thus bypass what

has been changed by aspects.

B. Sensors

Sensors are the reason why smartphones are smart. Func-

tionality of sensors is accessible by the API provided by the

system. Using aspects, it is possible to define pointcuts to cap-

ture desired API calls and define advices that alter, affect, or

even disabled chosen sensors.

C. Added Functionality

Aspects can be used to provide added functionality. Since

use cases can be preserved in source code by aspects [4, 5], it

is possible to use this logic on Android as an easy way for

developing preferences based on alternative flows in use cases

or by extension use cases. The main flow of a use case can be

expressed by regular object-oriented code or even by an as-

pect introducing elements into stub classes, to achieve greater

flexibility. Extension points can be captured by pointcuts and

the logic triggered by preferences can be activated by the cor-

responding advices inside aspects.

Another field of interests is advertisement. Advertisements

often annoy users with undesirable content. Advertisements

are mostly based on the GoogleAds application, whose func-

tionality is stored in the com.google.ads package. By defining

advices to this package it is possible to disable any call to it

and thus disable advertisements [11].

VII. RELATED WORK

The concept of affecting applications without making

changes to them is generally applicable to software develop-

ment and maintenance in particular. This has been addressed

by an aspect-oriented change realization model [4, 1] that pro-

vides several change types and ways of their realization using

aspect-oriented programming in AspectJ. The implementation

change types (denoted as generally applicable in this model)

are applicable to mobile applications, too. For example,

changing the GPS location provider corresponds to the Addi-

tional Parameter Checking/Modification change type, while

affecting the result of the GPS location get methods corre-

sponds to Additional Return Value Checking/Modifications.

Others have addressed technical issues in applying aspects to

modify compiled code in desktop applications [12, 13].

The approach presented in this paper is limited to compile

time weaving and can’t be used to achieve run time weaving.

Falcone and Currea propose a solution of this problem based

on a special application that weaves the provided aspect files

into the provided .apk files (application installation file) and

thus weaves aspects into every existing application [11]. Fal-

cone and Currea also propose another way of modifying de-

vice location. They suggest modification of location API by

replacing the return values of the getLastKnownLoca-

tion(String provider) method with custom values. This meth-

od returns last known location obtained by the device using

the given provider. This alters only one old location while

newer locations obtained as a result of the location request

callback are not altered. Developers tend to use newest loca-

tions (obtained from the callback of the location update re-

quest), while the location obtained from the getLastKnown-

Location(String provider) method is mostly used only at the

application startup. However, using our approach, it is possi-

ble to modify new and old locations at the same time.

Several other attempts to use aspect-oriented programming

in Android have been reported [14, 15, 16]. However, it was

not possible to replicate the results of any of these.

VIII. CONCLUSIONS AND FURTHER WORK

In this paper, we explored possibilities of using aspect-

oriented programming in the AspectJ programming language

and demonstrated how to alter the GPS sensor output, phone

signals, and deal with the Context class as a gate to the An-

droid services.

The biggest disadvantage in employing aspect-oriented

programming in Android is the limitation to compile time

weaving of aspects rooted in the build procedure itself [9],

since run time weaving would only create Java VM bytecode,

and not Dalvik bytecode that can run on Android devices.

Employment of aspects on the newest versions of Android

and new ART virtual machine should be performed to test

whether it is possible to weave aspects at run time. Next step

should be exploring whether the build process of Android

applications could be altered, so that aspects would affect se-

lected calls in all applications.

While we targeted mobile devices, the results should be ap-

plicable to other devices running Android. Here, Android TV

as an Android 5.0 extension is of particular importance. Of

course, direct testing is necessary to prove this.

ACKNOWLEDGMENTS

The work reported here was supported by the Scientific

Grant Agency of Slovak Republic (VEGA) under the grant No.

VG 1/1221/12.

This contribution/publication is also a partial result of the

Research & Development Operational Programme for the

project Research of Methods for Acquisition, Analysis and

Personalized Conveying of Information and Knowledge,

ITMS 26240220039, co-funded by the ERDF.

REFERENCES

[1] R. Menkyna and V. Vranić, “Aspect-Oriented Change Realization
Based on Multi-Paradigm Design with Feature Modeling,” in
Proceedings of 4th IFIP TC2 Central and East European Conference on
Software Engineering Techniques, CEE-SET 2009, Revised Selected
Papers, LNCS 7054, 2009, Krakow, Poland, Springer, 2012.

[2] V. Vranić, R. Menkyna, M. Bebjak, and P. Dolog, “Aspect-Oriented
Change Realizations and Their Interaction,” e-Informatica Software
Engineering Journal, vol. 3, num. 1, 2009, pp. 43–58.

[3] R. Pipík and I. Polášek, “Semi-Automatic Refactoring to Aspect-
Oriented Platform,” in Proceedings of 14th IEEE International
Symposium on Computational Intelligence and Informatics, Budapest,
IEEE, 2013, pp. 141–145.

[4] I. Jacobson, “Use Cases and Aspects – Working Seamlessly Together,”
Journal of Object Technology, vol. 2, num. 4, 2003, pp. 7–28.

[5] I. Jacobson and P.-W. Ng, Aspect-Oriented Software Development with
Use Cases. Addison-Wesley, 2004.

[6] J. Lang, M. Jantošovič, I. Polášek, “Re-Usability in Complex Event
Pattern Monitoring,” in Proceedings of IEEE 10th Jubilee International
Symposium on Aplied Machine Intelligence and Informatics, Herľany,
Slovakia, IEEE, 2012, pp. 265–270.

[7] J. Lang, J. Janík, “Reactive Distributed System Modeling Supported by
Complex Event Processing,” in Proceedings of ECBS-EERC 2013, 3rd
Eastern European Regional Conference on the Engineering of Computer
Based Systems, Budapest, Hungary, IEEE CS, 2013, pp. 163–164.

[8] J. Porubän, M. Sabo, J. Kollár, and M. Mernik, “Abstract Syntax Driven
Language Development: Defining Language Semantics Through
Aspects,” in Proceedings of the International Workshop on
Formalization of Modeling Languages (FML ’10), ECOOP 2010,
Maribor, Slovenia, ACM, 2010, pp. 6–10.

[9] D. Kramer, “Aspect Oriented Android Development – Tool
Integration,” Dean’s Blog, July 18, 2011.
https://deansserver.co.uk/~dean/2011/07/18/aspect-oriented-android-
development-tool-integration/

[10] Android Developers, http://developer.android.com/

[11] Y. Falcone and S. Currea, “Weave Droid: Aspect-Oriented
Programming on Android Devices,” in Proceedings of 27th IEEE/ACM
International Conference on Automated Software Engineering (ASE
2012). IEEE, 2012, pp. 350–353.

[12] I. Bluemke and K. Billewicz, “Aspect Modification of an EAR
Application,” in Advanced Techniques in Computing Sciences and
Software Engineering, Khaled Elleithy, Ed., Springer, 2010.

[13] I. Bluemke and K. Billewicz, “Aspects in the Maintenance of Complied
Program,” in Proceedings of 3rd International Conference on
Dependability of Computer Systems, DepCoS-RELCOMEX 2008,
Szklarska Poręba, Poland, IEEE, 2008.

[14] C. Anjos, “Aspect Oriented Programming (AOP) – A Case Study in
Android, Slideshare. http://www.slideshare.net/anjosc/aop-codebits2011

[15] “AspectJ in Android: pointcut call(* Activity.onCreate(..)) doesn't pick
out Activity.onCreate() calls,” Stackoverflow.
http://stackoverflow.com/questions/6356375/aspectj-in-android-
pointcut-call-activity-oncreate-doesnt-pick-out-acti

[16] F. Cejas, “Aspect Oriented Programming in Android.”
http://fernandocejas.com/2014/08/03/aspect-oriented-programming-in-
android/

