
Preserving Use Case Flows in Source Code

Michal Bystrický and Valentino Vranić
Institute of Informatics and Software Engineering

Faculty of Informatics and Information Technologies
Slovak University of Technology in Bratislava

Ilkovičova 2, Bratislava, Slovakia
E-mail: {michal.bystricky,vranic}@stuba.sk

Abstract—In this paper an approach to preserving use case
flows of events in source code called InFlow is proposed. The
approach preserves individual steps of use case flows of events
in the form of their counterpart statements, as well as their
ordering. This is achieved by mimicking each flow of events by
a sequence of method implementations with each step of the
flow of events corresponding to one statement in one of these
methods, enabled by a metaprogramming mechanism based
around the annotation named InFlow, first implemented in
Python. The approach is not limited to Python and actually
has been implemented in Ruby, AspectJ, and PHP, too. We
evaluated the InFlow approach by conducting a study of the
audio streaming service. The overall results indicate that the
InFlow approach is better at preserving use case flows of
events in source code than DCI and aspect-oriented software
development with use cases. Having use case steps directly
visible in code makes the intent expressed by the code more
comprehensible and easier to maintain.

Keywords-use case; flow of events; intent; annotation;
Python; aspect; reflection; DCI

I. INTRODUCTION

Modern software development is hardly imaginable with-
out use cases. The simple idea of capturing user interaction
with a system in the form of prose proved to be so powerful
over time. Important in particular to highly interactive
systems, use cases appear in a variety of notations out of
which Jacobson’s and Cockburn’s are probably the most
notable, even though probably each organization develops
its particular style [1]. Use cases entered the agile and lean
area of software development disguised—and somewhat
relaxed—as user stories, but have been recognized as agile
and lean in their original form [2].

What makes use cases so attractive is their ability to
modularize the behavior to be available to users in the
application. Having the behavior partitioned this way, one
may transparently reason over what functionality needs or
needs not to be supported in a particular version of the
application. This is the key issue in managing configurability
and it lies at heart of software product line development.

Unfortunately, the common use case realization in code
does not follow the partitioning defined by them. In fact,
use cases dissolve almost completely in code and it is
hard to even trace the corresponding parts of the code

without explicitly maintaining traceability links. Domain
structure typically expressed in the form of classes serves
as a common ground for use cases to contribute with their
specific attributes and methods, or even affecting methods
derived from other use case.

This was a long term concern of Ivar Jacobson [3] ever
since he came up with the idea of use cases in 1960s [4]
(though his seminal book came quite a bit later [5]), ending
in his and Pan-Wei Ng’s aspect-oriented approach to pre-
serving use cases in code [6]. However, what this approach
actually achieves is establishing a module for each use
case (modularizing each use case as an aspect). It does not
preserve the flows of events—denoted as use case flows or
simply flows—i.e., the actual steps of use cases and their
ordering.

Being able to see use case steps (i.e., steps of their flows
of events) directly in code and moreover to program in
terms of use case steps would make the intent expressed
by the code more comprehensible and easier to maintain.
This is of enormous help to programmers and even more
to other stakeholders that come into touch with code. Such
code would be potentially readable by end users and with
some training hopefully even maintainable by them in line
with current trend of end-user software engineering [7].

The actual use cases are not a part of the running software
and as such are condemned to the faith of any other
documentation: to become obsolete. Once coding is started,
it takes over the primate. No one will ever run the text
of use cases, so it rarely pays off to keep it up to date
with code. Even with the best efforts, who can guarantee
the consistency between the use cases and code?

DCI (Data, Context and Interaction) attacks this problem
by decoupling the domain model objects as a stable part of
the system from the roles they play in use cases [2], [8]. This
distinction is conceptual; depending on the programming
language, both domain objects and roles can be implemented
by classes. The methods of the classes that implement roles
become bearers of the user-goal level interaction. While
there may be several helper methods, the overall interaction
of roles in use case is captured in one use case method.
Albeit this improves the readability of the corresponding use
case flow, it still remains fragmented among the roles. This

vranic
IEEE (C) 2015

fragmentation seems to be inherent to the object-oriented
programming family of languages in the broadest sense
of this notion (consequently including most aspect-oriented
programming languages as they usually have object-oriented
foundations).

We propose an approach to preserving use case flows
in source code in one piece while retaining the benefits
of object-oriented decomposition. We do this by a simple
trick: each use case flow is mimicked by a sequence of
method implementations. Each step of the flow corresponds
to one statement in one of these methods. The method
implementations are arranged so their lines altogether copy
the ordering of the steps in a given flow. As with all simple
tricks, this one, too, needs a sophisticated support under
the hood in order to work: the methods of the classes that
participate in use case flows, are executed in the context of
a given flow instead of the corresponding methods of the
underlying domain object, which can be achieved by meta-
programming or aspect-oriented techniques.

The rest of the paper is organized as follows. Section II
presents the basic idea of preserving a use case flow in
source code. Section III describes the implementation of
attaching the classes that implement use cases to the classes
that represent domain model objects in Python. Section IV
deals with the details of implementing relationships between
use cases. Section V presents the overall process of imple-
menting use cases so that their flows are preserved in source
code and explains how this can be applied in common soft-
ware development situations. Section VI brings the results of
the evaluation. Section VII discusses the approach proposed
in this paper in the context of related work. Section VIII
concludes the paper and sketches directions for further work.

II. MAKING USE CASE FLOWS VISIBLE IN SOURCE CODE

The original meaning of use case is restricted to an inter-
action to achieve a clear user goal such as Transfer Money
or Place Order. In a boarder sense, use cases may involve
business processes outside the scope of the application being
developed (such as handing paper documents between per-
sons). The same technique may be used to capture high-level
or overview interactions aiming at summary goals (Product
Ordering), as denoted by Cockburn [4]. Also, lower level
interactions are commonly expressed as use cases, too,
more specifically denoted as habbits [2] or subfunctions [4],
though—if not too low level—this distinction is not always
clear (cf. different perception of the Log In use case [2],
[9]). In this paper, a use case denotes a user goal use case
or lower level interaction as distinguishing the two would
make no difference in implementation.

The actual list of steps in a use case is called flow of
events, use case flow, or simply flow. Sometimes, term
scenario is used instead (though it is also used to denote
a particular execution of steps). A use case may contain
several flows. Consider the use case in the left part of Fig. 1

expressed in Cockburn’s notation [4]. It contains two flows:
the main one and an alternative flow (extension flow in
Cockburn’s terminology). This particular use case—Play a
Stream—is a part of the audio streaming service that is going
to be used throughout this paper.

Figure 1. Preserving use case flows in source code.

The right part of Fig. 1 shows a use case implementation
in Python that preserves both flows in the Play a Stream use
case. An arrow connects each step with the statement that
implements it. Even a cursory look at Fig. 1 reveals that
this code preserves the ordering of steps in the use case.
Let’s go through the implementation and see how is this
achieved with respect to the use case. There is further code
behind this view that makes things work; this is explained
in Sect. III.

We propose to implement a use case as one class. In
the example, this is the PlayStream class (explicitly derived
from object as required by Python 2; in Python 3, this is
implicit). A class in Python, like in other object-oriented
languages, contains method definitions ordering of which is
insignificant with respect to the resulting behavior. However,
we purposely order method definitions to make the ordering
of their statements correspond to the ordering of the steps
in the use case.

Step 1 simply indicates how is the use case activated:
by having a user select to play a stream. Therefore, it
is implemented by the method that initiates the whole
interaction. We propose to call it run and to reserve this
name for this purpose. The run method is to be called as
a response to the corresponding user action upon the user
interface that activates the use case.

In step 2, the system requests credit card details (the
audio streaming service is paid), i.e., prompts for user input.
This usually requires to render (prepare and activate) the

corresponding form (out of input controls such as text areas,
drop-down list, etc.) to capture the user input, so the render
method along with an indicative form name should be
sufficient to make this intent comprehensible (the render
method is a part of Django, a popular web application
framework written in Python). In our example, the form to
enter credit card details is necessary right at the beginning of
the use case, so it is convenient to place the form rendering
into the initiating method (run).

In step 3, the user enters the credit card details. In general,
such user input is usually routed for further processing
to the corresponding method. The very signature of this
method stands for this type of user action. Again, the
method name should be indicative; in our example, it is
on credit card details . The method should be bound to

the corresponding event handler.
Similarly, events, such as failed validation, occur on the

part of the system, too. Therefore, method signatures can
also indicate system events as can be seen in step 5a. This
also shows how alternative flows can be embraced in the
class that implements the use case.

In a common object-oriented program, all these meth-
ods would be spread throughout a number of classes that
implement domain objects. In our case, these could be a
credit card, audio stream, user, etc. From this perspective,
the classes that implement use cases seemingly “pull out”
these methods and gather them in one place. This is sketched
in Fig. 2.

Figure 2. Domain object methods “pulled out” into classes that implement
use cases.

Consider the method play in the class Player. In our
approach, this method is “pulled out” into two use cases
implemented by the corresponding classes: StartStream and
PlayStream. However, it is still meant to be called upon
Player objects. Depending on the context—i.e., use case—
in which this call occures, the actual execution is redirected
to the StartStream . play or PlayStream.play method. This
is arranged by the mechanism whose part is the InFlow
annotation as displayed in Fig. 2 (a detailed explanation fol-
lows in the next section). In a straightforward object-oriented
implementation, polymorphism or an explicit conditional

statement would have to be used to alter the method behavior
according to the context in which it is being executed.

III. ATTACHING USE CASES TO THE DOMAIN MODEL

In order to make the idea of preserving use case flows in
source code using the InFlow annotation work in its Python
implementation, the Python metaprogramming capabilities
have to be employed. The approach proposed here is not
limited to Python and we actually implemented the InFlow
annotation in Ruby, AspectJ, and PHP.

A. The InFlow Annotation Under the Hood

As we explained in Sect. II, methods of domain model
objects are seemingly “pulled out” into the classes that
implement use cases. To ensure the exact representation of
use case steps in the classes that implement them, we create
a method or split the method in the domain model into two
or more methods or even write a wrapper method. One of
these methods is then extended with a method in the class
that implements the use case. An example of such method
creation is validation that does not throw an exception as is
common, but instead it calls a method that indicates an error
has occurred. This typically represents an alternative flow in
the class that implements the use case because unexpected
situations are handled by alternative flows.

If a method in domain model object contains other
statements beside those corresponding to use case steps,
the statements corresponding to use case steps have to be
extracted into a separate method. The new method is then
extended with the method from the class that implements
the use case.

Now, we have prepared methods that are about to be
extended. Yet, the information about a place of the extension
needs to be provided before the actual extending takes place.
We propose to store the metadata about the extension in the
annotation that we named InFlow:

class Player(Model):
@InFlow([

”PlayStream.on credit card details play”
])
def play(self):

pass

The Python decorator allows to wrap the decorated play
method into a wrapper method. In this case the wrapper
method is an InFlow method that just saves the metadata to
the decorated play method.

The metadata in the InFlow annotation consist of multiple
strings that enable extensions. In these strings, the characters
up to the first dot define an object out of which extension
may be applied. This is followed by the names of two
methods located in this object separated by a space. The
first method defines the origin of the flow, while the second
one defines the extension.

Subsequently, we need to take control over the execution
flow (control flow) in order to inspect the InFlow meta-
data saved in the decorated methods, and then call the
corresponding method based on the InFlow metadata (i.e.,
proceed with the execution or call a method in the class
that implements the use case). The methods in the domain
model objects are wrapped in order to take control over the
execution flow. These methods are wrapped similarly as in
the decorator:

class Player(Model):
def play(self):

...
def wrap(method):

def wrapper(self):
print(”Before the method execution”)
returned = method(self)

return wrapper
Player.play = wrap(Player.play)

As can be seen in the example, the methods in domain
model objects are replaced with wrappers that can control
the execution flow; this is similar to weaving in aspect-
oriented languages. Python allows for calling an object
that can store the state. Therefore, in the wrapper we
instantiate the wrapping object that controls the execution
flow according to a flow list. The flow list is a list from
which the wrapping object was called, which is provided by
the standard Python module called inspect. The flow list is
traced before a method call to see whether its origin matches
with the metadata in the InFlow annotation. If this is so, the
wrapping object calls the extension instead of proceeding
with execution.

Finally, consider again the last code sample containing
the definition of the Player class and Fig. 3. If the play
method of an object of the Player type is called from the
origin (the on credit card details method of the object of
the PlayStream type), the play method of the object of the
PlayStream type will be executed instead. Extensions are
applied at runtime depending on their origin in the flow.

The frames in the left part of Fig. 3 indicate extensions in
the classes that implement use cases. The frames in the right
part of the figure indicate the methods of the domain model
objects being extended (they are annotated with the InFlow
annotations). These extensions are executed in the context
of a given use case instead of the corresponding methods of
the underlying domain object. In the example, the extension
(the play method of the object of the PlayStream type) is
executed in the context of the object of the PlayStream type
(use case), but as well as in the context of the object of the
Player type that is accessible in the extension.

B. Reusing Methods in Use Case Implementation

Some methods of classes that implement use cases are
repeated. This can be avoided by introducing a new reuse
layer between the classes that implement use cases and

Figure 3. The execution flow indicated by arrows.

domain model objects. This reuse layer initiates use cases
and also contains implementation of the methods that are
to be reused. The InFlow annotation in domain model
objects enforces using the reuse layer implementation of
these methods.

For example, the CreditCardReuse reuse layer calls the
Play a Stream or Start a Stream use case. Because the
reuse layer contains implementation of the make reservation
method of a credit card and the InFlow annotation is attached
to the make reservation method of the CreditCard object,
according to the annotation, when the make reservation
method of the CreditCard object is called, the implemen-
tation of the make reservation method from the reuse layer
is reused for both classes that implement use cases.

IV. IMPLEMENTING RELATIONSHIPS BETWEEN USE CASES

There are three types of relationships between use cases:
include, extend, and generalization. In this section, we ex-
plain how to implement them in the context of our approach
to preserving use case flows in source code.

A. Extend Relationship

To realize the extend relationship, the class that imple-
ments the use case to be extended has to enable this by
embracing an array of modules. These modules are called,
if they are present. By inserting the class that implements
the extending use case into the array of modules, a call to
this class will occur in the corresponding method of the class
that implements the extending use case.

However, the extend relationship implemented in the form
of a slot does not exactly reflect the nature of the extend
relationship between use cases. Because the implementation
of the use case that is being extended has to contain an
implementation to support this extension, whereas a use case
being extended is oblivious of this relationship. The extend

relationship actually corresponds to an asymmetric aspect-
oriented implementation in which an aspect affects (extends)
a class [6], [10]. On the other hand, the extend relationship
in the form of an aspect is hard to spot in source code
because join points are not visible explicitly in the class
that implements the use case to be extended. Tracing such
source code requires a tool capable of identifying join points.
Therefore, our approach intentionally exposes join points in
the form of the InFlow annotation.

B. Generalization Relationship

Most often, the generalization relationship between use
cases is used to specify different variants of an abstract use
case. However, it may occur between two concrete use cases
as well, in which case it involves overriding the individual
steps in a similar manner as method overriding. Therefore,
in our approach we use inheritance and method overriding
to implement the generalization relationship.

In Python, it is also possible to employ aspect-oriented
programming to implement generalization. This can be
achieved by so-called inter-type declarations.

C. Include Relationship

The include relationship can be implemented simply as
a method call. In fact, the extend relationship implemented
in the form of a slot is actually a call, too, assuming the
slot is not empty. Thus, in both include and extend, one use
case implementation calls the other one. In case that both
use case involved in such a relationship extend the same
domain model using the InFlow annotation, both these use
cases are in the same execution flow and both can provide
the necessary extension. One approach to solve this would be
to call both extensions. For example, multiple reuse layers in
a chain can implement the same extension method. Current
implementation of the InFlow approach in Python extends
the first found (the nearest) in the flow list that matches the
InFlow annotation.

V. THE OVERALL PROCESS

The InFlow approach can be easily employed within a
common software development process. If applied from
the beginning, the process is straightforward. If the InFlow
approach is applied to the existing code in a refactoring
manner, the following steps apply:

1) Identify the parts or statements of source code that are
related to use cases

2) If the parts or statements of source code related to
use cases cannot be found or do not reflect use case
steps, partition methods in order to be extended by
the methods of the classes that implement use cases
as follows:

a) Create a method (in case it does not exists)
b) Split the method into two or more methods (in

case the method consists of multiple statements

some of which have no counterpart in the steps
of the use case)

c) Write a wrapper method (in case of difference
in abstractions; the method consists of low-
level implementation details and it needs to be
wrapped to correspond to the use case)

3) Create one class for each use case
4) Extend the methods in the domain model objects with

the methods of the classes that implement use cases
using the InFlow annotation

5) Move the use case related implementations into the
methods of the classes that implement use cases

6) Order the methods in each class that implements a use
case in order to statements reflect order of the use case
steps

7) Substitute the calls to the methods of domain model
objects with the calls to the methods of the classes
that implement use cases

Regarding step 1, the parts of source code that are going
to be extended into classes that implement use cases have
to be prepared for this (statements reflecting use case steps
wrapped into methods). One statement should correspond to
one use case step. The statements are located in the domain
model, but also they can be located in the controller if the
MVC pattern is applied.

Regarding step 2, if the parts or statements of source code
related to use cases cannot be found or do not reflect use
case steps, the methods appearing there should be partitioned
in order to reflect use case steps (see Sect. III-A). In case a
statement or a method does not exists, it has to be created.
In case a method consists of multiple statements and some
of them have no counterparts in the use case steps, it has to
be split into two or more methods. In case a method is too
low-level for a use case, it has to be wrapped by a wrapper
method.

Regarding step 4, the methods from the domain model
are annotated with the InFlow annotation where a place of
extension must be provided. A place of extension can be a
method in a class that implements a use case or a method
in the reuse layer (see Sect. III-B).

To be consistent with lean practices, use cases should be
thrown away after they serve their purpose in analysis [2].
Manually maintaining the consistency between use cases and
their implementation takes precious time and effort, and use
cases so easily become obsolete struggling to keep pace with
code. However, there may be need to keep use cases and the
question of how to effectively keep them consistent with
code arises.

After several changes, classes that implement use cases
can become obfuscated due to new features being added
without appropriate refactoring. The solution to this problem
is to add mandatory links between use cases and classes
that implement them, so that applying a change to one of

them would enforce a change to the other one. For this, we
developed an extension in JavaScript.

VI. EVALUATION

The approach to preserving use case flows proposed in
this paper—denoted here as InFlow for brevity—is expected
to raise the intentionality of source code. Simply stated,
this means how well the intent is readable and maintainable
with respect to the corresponding use cases as a referent
expression of intent.

To evaluate the InFlow approach, we conducted a study
based on the audio streaming service parts of which have
been used in this paper to explain the approach.1 The study
involved twelve use cases. These were implemented using
our InFlow approach and two other approaches that aspire at
preserving use cases in source code: DCI and aspect-oriented
software development with use cases [11], [12].

We consider the following attributes to be of significance
when judging how well are use cases preserved in source
code: complexity of following a use case flow, complexity
of making a change to a use case flow, explicit coverage
of all steps of a use case flow, and traceability of use case
implementation from the domain model implementation. We
assume that use cases are either explicitly recorded in a
written form or there is an extensive awareness of use cases
among developers as if they are “thinking in use cases”.

We measured two first attributes by a number of context
switches. By context switch we mean the necessity to look
elsewhere than at the next statement in source code when
following a particular thread of thoughts. Here, the thread
of thoughts is represented by a particular use case flow that
has to be followed step by step.

Complexity of following a use case flow in source
code.: Table I summarizes the results of evaluating the
complexity of following a use case flow in source code
by the number of context switches. InFlow and aspect-
oriented software development with use cases ended up with
closely matching results as they both are able to focus the
methods that express use case step into a class or aspect.
DCI fragments use case implementation according to roles
each of which implements a part of some use case flow.
As a consequence, to follow a particular flow of events
one must often switch among the roles. The Start a Stream
use case implemented in DCI is presented in Fig. 4. Note
how the use case implementation on the right side cannot be
arranged to reflect the use case steps on the left side making
the arrows linking the use case steps and corresponding
statements crossed.

Complexity of making a change to a flow of events in
source code.: Table II summarizes the results of evaluating
the complexity of making a change to a flow of events in
source code. We considered the following types of changes:

1The whole study is available at http://fiit.stuba.sk/˜bystricky/InFlow/.

Table I
COMPLEXITY OF FOLLOWING A USE CASE FLOW.

InFlow DCI AOP
Start a Stream 6 15 4
Play a Stream 0 5 0
Select the Next Track 0 10 0
Fade Tracks 0 7 0

Figure 4. Preserving a use case in source code: DCI.

Integrate: Integrating an alternative flow into the
main flow

Add-main: Adding steps to the main flow
Add-alt: Adding steps to an alternative flow
Remove-main: Removing steps from the main flow
Adjust: Adjusting steps in the main flow

Table II
COMPLEXITY OF MAKING A CHANGE TO A FLOW OF EVENTS.

InFlow DCI AOP
Integrate 4 4 2
Add-main 2 3 2
Add-alt 2 2 2
Remove-main 2 2 2
Adjust 1 1 1

Implementing changes in InFlow required searching for
annotations. In aspect-oriented software development with
use cases, the classes in the domain model contain no links
to aspects that affect them, so in most cases only changes
to aspects were needed. This might have been expected
as aspects have been identified as a way to modularize
changes [13], [14]. Handling DCI roles caused additional
context switches.

Explicit coverage of all steps of a use case flow in
source code.: Explicit coverage of all steps of a use case
flow in source code in DCI implementation is only partial as
can be seen in Fig. 4. DCI separates the controller from the
context, which makes some steps to be missing in source
code (steps are located in the controller instead in the use

case implementation). Note that some steps are not mapped
to source code of the use case. InFlow moves the generation
of the view into the context (recall the render method from
Sect. II), which can be also achieved in aspect-oriented
software development with use cases. By this, in both Inflow
and aspect-oriented software development with use cases, all
steps of a use case flow are observable in source code.

Traceability of use case implementation from the do-
main model implementation.: There are no traceability links
included in the source code resulting from DCI and aspect-
oriented software development with use cases. In DCI,
role implementation is not traceable from the classes that
constitute the domain model. Of course, one could easily
add traceability links in the form of comments. However,
consistency of such informal expressing of traceability is
not guaranteed and actually the links would quickly become
outdated. In InFlow, the traceability links from the domain
model classes to the classes that implement use cases (in the
form of InFlow annotations) are a part of the approach as
such and hence must be correct at all times.

VII. RELATED WORK

As we already stressed, DCI strives at preserving use
cases in source code, too [2], [8]. According to Coplien,
DCI separates the changing parts from stable parts [15] by
separating the model with local behavior from use case im-
plementation [8]. Our approach does not separate the model
with local behavior because this would cause proliferation
of implementation details in the classes that implement use
cases. Therefore, in case of changing the implementation
details, in DCI, developers apply the change only to the use
case implementation, whereas in our approach they have
to make changes to the domain model, too. We gave up
these implementation details in use case implementation in
favour of use case implementation readability. This is not a
limitation of the InFlow annotation as it allows for pulling
out any source code to classes that implement use cases, but
a feature of the approach.

DCI modularizes source code into use cases, but keeps
it fragmented according to roles. Due to this, the roles the
domain objects play in use cases break the sequences of
steps of use case flows in source code. Consequently, to get
a complete picture of a use case, one has to trace source
code over the roles.

The separation of methods related to use cases into
aspects—as proposed in aspect-oriented software develop-
ment with use cases [6]—is not sufficient to fully reflect use
cases in source code. However, with appropriate partitioning
of methods, this approach allows for similar effects as our
approach. On the other hand, aspect-oriented hides away the
traceability links to extensions making hard to identify what
is actually being extended.

The InFlow declaration is somewhat similar to the control
flow pointcut in aspect-oriented programming, as both op-

erate upon the execution flow. For example, the flow list in
AspectJ is kept in the thread-local storage, as opposed to the
InFlow annotation with which it is saved in the wrapping
object.

Hirschfeld et al. [16] employed Python annotating ca-
pabilities similarly as we did. They are using annotations
to mark which method in the domain model semantically
belongs to which use case. However, this approach is limited
to tracing methods at runtime and testing whether domain
model executes methods that belong to use cases.

Other approaches provide promising results in the broader
area of preserving the intent in source code. These include
intentional programming [17], literate programming [18],
domain driven design [19], employing annotations to record
applied design patterns [20], dynamic code structuring [21],
[22], and code projection based on the intent expressed by
structured comments [23]. Use cases can be seen as an
embodiment of the end user intent and thereof these results
are principally related to our work. However, none of these
approaches aims explicitly at preserving use cases at any
level.

VIII. CONCLUSIONS AND CHALLENGES

In this paper an approach to preserving use case flows of
events in source code is proposed. The approach preserves
the individual steps of the flows and their ordering by mim-
icking each flow by a sequence of method implementations,
with each step of the flow (use case step) corresponding
to one statement in one of these methods. To enable this,
we developed a metaprogramming mechanism based around
the annotation we named InFlow (that gave the name
to the whole approach) first implemented in Python. The
InFlow approach is not limited to Python and we actually
implemented the InFlow annotation in Ruby, AspectJ, and
PHP.

We evaluated the InFlow approach with respect to the
complexity of following a use case flow in source code,
complexity of making a change to a use case flow in source
code, explicit coverage of all steps of a use case flow in
source code, and traceability of use case implementation
from the domain model implementation by conducting a
study of the audio streaming service. The audio streaming
service was implemented with InFlow, DCI (Data, Context
and Interaction) [2], and aspect-oriented software develop-
ment with use cases [6]. The overall results indicate that the
InFlow approach is better at preserving use case flows in
source code.

Having use case steps directly visible in code makes the
intent expressed by the code more comprehensible and easier
to maintain. This increase of intentionality brings end-user
developers closer to the level of professional developers,
which is in accordance with the growing popularity of end-
user software engineering [7].

There are several points of concern we consider to be
challenging. First, although the InFlow approach brings real
software closer to end-user developers, they still have to
cope with programming language constructs which they are
typically not comfortable with. The question is how to shield
away this complexity while at the same time retaining the
flexibility of programming languages.

Second, classes that implement use cases are associated
directly to domain model objects by the InFlow annotation.
This causes mixing different levels of abstraction: high-
level methods with implementation details of domain model
objects. The question is how to depart them without losing
benefits of the ability to trace use case implementation from
domain model objects.

Third, despite the extension we developed in JavaScript
enables to enforce consistency between use cases and their
implementation, this is not the same as a native support.
The question remains how to achieve this while not forcing
developers away from established programming languages.

ACKNOWLEDGMENT

The work reported here was supported by the Scientific
Grant Agency of Slovak Republic (VEGA) under the grant
No. VG 1/1221/12. This contribution/publication is also a
partial result of the Research & Development Operational
Programme for the project Research of Methods for Acqui-
sition, Analysis and Personalized Conveying of Information
and Knowledge, ITMS 26240220039, co-funded by the
ERDF.

REFERENCES

[1] V. Vranić and L’uboš Zelinka, “A configurable use case mod-
eling metamodel with superimposed variants,” Innovations in
Systems and Software Engineering: A NASA Journal, vol. 9,
no. 3, 2013.

[2] J. Coplien and G. Bjørnvig, Lean Architecture for Agile
Software Development. Wiley, 2010.

[3] I. Jacobson, “Use cases and aspects – working seamlessly
together,” Journal of Object Technology, vol. 2, no. 4, July–
August 2003.

[4] A. Cockburn, Writing Effective Use Cases. Addison-Wesley,
2000.

[5] I. Jacobson, Object Oriented Software Engineering: A Use
Case Driven Approach. Addison-Wesley, 1992.

[6] I. Jacobson and P.-W. Ng, Aspect-Oriented Software Devel-
opment with Use Cases. Addison-Wesley, 2004.

[7] M. M. Burnett and B. A. Myers, “Future of end-user software
engineering: Beyond the silos,” in Proceedings of Future of
Software Engineering, FOSE 2014. Hyderabad, India: ACM,
2014, pp. 201–211.

[8] T. Reenskaug and J. O. Coplien, “The DCI architecture: A
new vision of object-oriented programming,” Artima Devel-
oper, 2009, http://www.artima.com/articles/dci vision.html.

[9] G. Övergaard and K. Palmkvist, Use Cases: Patterns and
Blueprints. Addison-Wesley, 2004.

[10] J. Bálik and V. Vranić, “Symmetric aspect-orientation: Some
practical consequences,” in Proceedings of NEMARA 2012:
International Workshop on Next Generation Modularity Ap-
proaches for Requirements and Architecture, at AOSD 2012.
Potsdam, Germany: ACM, 2012.

[11] M. Bystrický, “Implementing the control flow pointcut in
python,” in Proceedings of 10th Student Research Conference
in Informatics and Information Technologies, IIT.SRC 2014,
2014, pp. 463–467.

[12] ——, “Aspectpy,” bitbucket.org/bystricky/aspectpy, 2014.

[13] M. Bebjak, V. Vranić, and P. Dolog, “Evolution of web ap-
plications with aspect-oriented design patterns,” in Proceed-
ings of ICWE 2007 Workshops, 2nd International Workshop
on Adaptation and Evolution in Web Systems Engineering,
AEWSE 2007, in conjunction with ICWE 2007, Como, Italy,
Jul. 2007, pp. 80–86.

[14] V. Vranić, R. Menkyna, M. Bebjak, and P. Dolog, “Aspect-
oriented change realizations and their interaction,” e-
Informatica Software Engineering Journal, vol. 3, no. 1, pp.
43–58, 2009.

[15] J. Coplien, “The DCI architecture: Supporting the agile
agenda,” Nov. 2009, Øredev Developer Conference.

[16] R. Hirschfeld, M. Perscheid, and M. Haupt, “Explicit use-case
representation in object-oriented programming languages,”
in Proceedings of 7th Symposium on Dynamic Languages.
Portland, Oregon, USA: ACM, 2011, pp. 51–60.

[17] C. Simonyi, “The death of computer languages, the birth of
intentional programming,” Microsoft Research, Tech. Rep.
MSR-TR-95-52, 1995.

[18] D. E. Knuth, “Literate programming,” The Computer Journal,
pp. 97–111, 1984.

[19] E. Evans, Domain-Driven Design: Tackling Complexity in the
Heart of Software. Addison Wesley, 2003.

[20] M. Sabo and J. Porubän, “Preserving design patterns using
source code annotations,” Journal of Computer Science and
Control Systems, vol. 2, no. 1, pp. 53–56, 2009.

[21] M. Nosál’ and J. Porubän, “Supporting multiple configuration
sources using abstraction,” Central European Journal of
Computer Science, vol. 2, no. 3, pp. 283–299, 2012.

[22] M. Nosál’, J. Porubän, and M. Nosál’, “Concern-oriented
source code projections,” in Proceedings of 2013 Federated
Conference on Computer Science and Information Systems,
FedCSIS 2013. Kraków, Poland: IEEE, 2013, pp. 1541–
1544.

[23] J. Porubän and M. Nosál’, “Leveraging program compre-
hension with concern-oriented source code projections,” in
Proceedings of Slate’14, 3rd Symposium on Languages, Ap-
plications and Technologies, Bragança, Portugal, 2014, pp.
35–50.

