Matematika pre informatiku, 

akad. rok 2016-2017, zimný semester

 

Pedagógovia zabezpečujúci predmet: Prof. Ing. Vladimír Kvasnička, DrSc.

                                                             RNDr. Iveta Dirgová Luptáková, PhD

                                                             Katedra aplikovanej informatiky a matematiky PF UCM

 

Ročník: bakalárske štúdium, 1. nominálny ročník, prvý (zimný) semester

 

Kniha: V. Kvasnička a I. Dirgová-Luptáková: Matematika pre informatikov, (2016) (pdf)

 

Rozsah: prednáška – 2 hod, v štvrtok o 10.15 – 12.05 hod v posluchárni S3.5, prof. V. Kvasnička

 

(1) cvičenie – 2 hod, pondelok 13.55 – 15.45 hod v posluchárni SMS35, dr. Dirgová Luptáková

(2) cvičenie – 2 hod, štvrtok 12.05 – 13.55 hod v posluchárni SMS41, dr. Dirgová Luptáková

(3) cvičenie – 2 hod, štvrtok 13.55 – 15.45 hod v posluchárni SMS41, dr. Dirgová Luptáková

(4) cvičenie – 2 hod, štvrtok 13.55 – 15.45 hod v posluchárni S3.5, prof. V. Kvasnička

 

Konzultácia: streda  o 14.00 – 16.00 hod v pracovni VK na 3. poschodí (dohodnúť emailom)

 

Počet kreditov: 6

 

 

Ciele predmetu:

Oboznámiť študentov v bakalárskom štúdiu so základnými matematickými štruktúrami, ktoré sú požadované pri štúdiu informatiky. Rozvinúť u študentov schopnosť rigorózneho matematického myslenia pri riešení a formulovaní informatických problémov. Predpoklady na úspešné absolvovanie skúšky z tohto predmetu sú základné vedomosti zo stredoškolskej matematiky.

 

Anotácia predmetu:

(A) Teória matematického dôkazu, charakteristika deduktívneho dôkazy v axiomatickom systéme, základné typy dôkazu, zovšeobecnenie a falzifikácia, induktívny dôkaz. (B) Teória množín  - operácie, množinová algebra, funkcie a relácie, množinová kombinatorika, enumeračné metódy.

(C) Reálna funkcia jednej premmennej, elementárne funkcie, postupnosť, limita postupnosti, limita funkcie, spojitosť funkcie, derivácia funkcie, pravidlá pre výpočet derivácie, priebehu funkcie. Neurčitý integrál, primitívna funkcia, výpočet integrálov, určitý integrál, nevlastný integrál, jednoduché diferenciálne rovnice.   

 

Kľúčové slová:

Dôkaz, matematická indukcia, množiny, matice, systém lineárnych rovníc, determinanty, algebraické štruktúry, grupy, reálne funkcie, limita funkcie, spojitosť funkcie, derivácia funkcie, priebeh funkcie, neurčitý, určitý a nevlastný  integrál, diferenciálne rovnice. 

 

Podmienky úspešného absolvovania:

·        V priebehu semestru bude jedna kontrolná (priebežná) písomka po 50 bodoch, t. j. z cvičenia môže študent získať max. 50 bodov. Skúška bude spočívať v záverečnej písomka s max. počtom 50 bodov, žiadna neospravedlnená neúčasť na cvičení

·        Výsledná známka je určená súčtom bodov 2 kontrolných písomiek a záverečnej písomky.

·        Písomky sú hodnotené takto:  známka A – 100 – 91 bodov, známka B – 90 – 81 bodov, známka C – 80 – 71 bodov, známka D – 70 – 61 bodov, známka E – 60 – 51 bodov, známka FX – 50 – 0 bodov.   .

 

 

Sylabus prednášky:

 

1.týždeň (29.9.2016). Metódy matematického dôkazu  - deduktívny dôkaz v axiomatickom systéme, základné pravidlá logického usudzovania, priamy dôkaz, nepriamy dôkaz, dôkaz sporom, dôkaz pre rôzne prípady, zovšeobecnenie v predikátovej logike, falzifikácia (kontrapríklad), matematická indukcia.

 

2. týždeň (6.10.2016). Úvod  do teórie množín. – množina, podmnožina, operácie nad množinami, množinová algebra, mohutnosť a enumerácia (counting), karteziánsky súčin, relácia, operácie nad reláciami, relácia rovnosti, relácia usporiadanosti, Hasseho diagram. Funkcie, zložená funkcia, inverzná funkcia.

 

3.týždeň (13.10.2016) Komplexné čísla – definícia, operácie nad komplexnými číslami, Eulerov tvar komplexného čísla.

 

4. týždeň (20.10.2016). Maticová algebra I definícia matice, maticová algebra, hodnosť matice, inverzná matica.

 

5. týždeň (27.10.2016). Maticová algebra II - systém lineárnych rovníc, Gaussova eliminačná metóda riešenia sústavy lineárnych rovníc, homogénna sústava lineárnych rovníc, determianty.

 

6. týždeň (3.11.2016). V tomto týždni sa koná 1. písomka, bude obsahovať 5 príkladov, znamky  max. počet bodov je 50

 

7. týždeň (10.11.2016) Funkcia jednej reálnej premennej - funkcia, základné vlastnosti, zložená funkcia, inverzná funkcia.

             

8.  týždeň (1.12.2016). Diferenciálny počet funkcie jednej premennej - Číselná postupnosť, limita postupnosti, limita funkcie a spojitosť funkcie. Derivácia, vlastnosti funkcií s deriváciou, priebeh funkcie.

 

9. týždeň (8.12.2016). Integrálny počet  neurčitý integrál, základné vlastnosti, výpočet neurčitých integrálov, –  určitý integrál, základné vlastnosti, výpočet určitých integrálov

 

10. týždeň (15.12.2016). ). V tomto týždni sa koná 2.písomka  (hlavne z integrálov) bude obsahovať max. počet bodov je 50 (1 príklad za 10 bodov).

 

 

  Prvá opravná písomka (pre tých študentov, ktorí

  sumárnou známkou z predchádzajúcich dvoch termínov neprospeli),

  bude sa konať dňa 12. 1. 2017 o 10.15 hod v posluchárni S3.5.

 

  Druhá opravná písomka sa bude konať dňa 19. 1. 2017 o o 10.15 v posluchárni S4.1.

 

 

Poznámka: zápis známok do indexov budem vykonávať v utorok (24.1.) a v štvrtok (26.1.) v čase 10.00-11.00 hod v pracovni na 3. poschodí .